

CYBER SECURITY AWARENESS TRAINING

Module Objectives

- Elements of Information Security
- The Security, Functionality, and Usability Triangle
- Security Challenges
- Effects of Hacking
- Who is a Hacker?
- Hacker Classes
- Types of Hackers

- Hacking Phases
- Types of Attacks on a System
- Why Ethical Hacking is Necessary?
- Scope and Limitations of Ethical Hacking
- What Do Ethical Hackers Do?
- Skills of an Ethical Hacker
- Vulnerability Research

Scenario: How Simple Things Can Get You into Trouble?

 Gwen was working late. She could not complete her task so she spoke to her boss and took work home in a USB device. She worked the entire night and brought the work back to the office.

A few days later, someone else used the device who was not aware of the data Gwen had put on it. He misplaced the device and never found it again, but started using another USB device in the place of the old one.

Shortly after that, the company recevied a call from a client saying that details of their project were found online.

000010101001

What went wrong? Who was responsible for this?

Module Flow

Internet Crime Current Report: IC3

http://www.ic3.gov

Data Breach Investigations Report

http://www.verizonbusiness.com

Types of Data Stolen From the Organizations

UK Security Breach Investigations Report 2010, Source: http://www.7safe.com

Essential Terminologies

It is the notion among hackers that something is worth doing or is interesting

An IT system,
product, or component
that is identified/
subjected to a required
security evaluation

Attack

An assault on the system security derived from an intelligent threat.

An attack is any action violating security

Essential Terminologies

Exploit

A defined way to breach the security of an IT system through vulnerability

A Zero-Day

A computer threat that tries to exploit computer
application vulnerabilities that are unknown to others
or undisclosed to the software developer

Security

A state of well-being of information and infrastructure in which the possibility of theft, tampering, and disruption of information and services is kept low or tolerable

Essential Terminologies

An action or event that might compromise security

A threat is a potential violation of security

Vulnerability

Existence of a weakness, design, or implementation error that can lead to an unexpected and undesirable event compromising the security of the system

Daisy Chaining

Hackers who get away with database theft usually complete their task, then backtrack to cover their tracks by destroying logs, etc.

Elements of Information Security

Assurance that the information is accessible only to those authorized to have access

Confidentiality breaches may occur due to improper data handling or a hacking attempt

The trustworthiness of data or resources in terms of preventing improper and unauthorized changes

Assurance that information can be relied upon to be sufficiently accurate for its purpose

Assurance that the systems responsible for delivering, storing, and processing information are accessible when required by the authorized users

Authenticity and Non-Repudiation

Authenticity

- Authenticity refers to the characteristic of a communication, document or any data that ensures the quality of being genuine or not corrupted from the original
- Major roles of authentication include confirming that the user is who he or she claims to be and ensuring the message is authentic and not altered or forged
- Biometrics, smart cards, or digital certificates are used to ensure authenticity of data, transactions, communications or documents

Non-Repudiation

- It refers to the ability to ensure that a party to a contract or a communication cannot deny the authenticity of their signature on a document or the sending of a message that they originated
- It is a way to guarantee that the sender of a message cannot later deny having sent the message and that the recipient cannot deny having received the message
- Digital signatures and encryption are used to establish authenticity and nonrepudiation of a document or message

The Security, Functionality, and Usability Triangle

Level of security in any system can be defined by the strength of three components:

Security Challenges

Evolution of technology focused on ease of use

Direct impact of security breach on corporate asset base and goodwill

Increased number of network-based applications

It is difficult to centralize security in a distributed computing environment

Increasing complexity of computer infrastructure administration and management

Security Challenges

Top Security Challenges

- Increase in sophisticated cyber criminals
- Data leakage, malicious insiders, and remote workers
- Mobile security, adaptive authentication, and social media strategies
- 4. Cyber security workforce
- Exploited vulnerabilities, operationalizing security
- 6. Critical infrastructure protection
- Balancing sharing with privacy requirements
- 8. Identity access strategies and lifecycle

List of Security Risks

- Trojans/Info Stealing Keyloggers/
- 2. Fast Flux Botnets
- 3. Data Loss/Breaches
- 4. Internal Threats
- 5. Organized Cyber Crime
- 6. Phishing/Social Engineering
- 7. New emerging viruses
- 8. Cyber Espionage
- 9. Zero-Day Exploits
- 10. Web 2.0 Threats
- 11. Vishing attacks

List of Security Risks

- 12. Identity black market
- 13. Cyber-extortion
- 14. Transportable data (USB, laptops, backup tapes)
- 15. "Zombie" networks
- 16. Exploits in new technology
- 17. Outsourcing projects
- 18. Social networking
- 19. Business interruption
- 20. Virtualization and cloud Computing

Effects of Hacking

Theft/damage of client or customer/business data, credit card details, and social security numbers, for identity fraud or theft

Attackers use backdoors
such as Trojan horses,
rootkits, viruses, and worms
to compromise systems

Theft of email addresses for spamming, passwords for access to online banking, ISP, or web services

Effects of Hacking on Business

According to the Symantec 2010 State of Enterprise Security Study, hacking attacks cost large businesses an average of about \$2.2 million per year

Theft of customers' personal information may risk the business's reputation and invite lawsuits

Hacking can be used to steal, pilferage, and redistribute intellectual property leading to business loss

Attackers may steal corporate secrets and sell them to competitors, compromise critical financial information, and leak to the rivals

Botnets can be used to launch various types of DoS and other webbased attacks which may lead to business down-time and significant loss of revenues

Who is a Hacker?

Intelligent individuals
with excellent computer
skills, with the ability to
create and explore into
the computer's software

and hardware

For some hackers, hacking is a hobby to see how many computers or networks they can compromise

Their intention can either be to gain knowledge or to poke around to do illegal things Some do hacking with malicious intent behind their escapades, like stealing business data, credit card information, social security numbers, email passwords, etc.

Hacker Classes

Black Hats

Individuals with extraordinary computing skills, resorting to malicious or destructive activities and are also known as crackers

White Hats

Individuals professing hacker skills and using them for defensive purposes and are also known as security analysts

Suicide Hackers

Individuals who aim to bring down critical infrastructure for a "cause" and are not worried about facing 30 years in jail for their actions

Gray Hats

Individuals who work both offensively and defensively at various times

Hacktivism

Hacktivism is an act of promoting a political agenda by hacking, especially by defacing or disabling websites

It thrives in the environment where information is easily accessible

Aims at sending a message through their hacking activities and gaining visibility for their cause

Common targets include government agencies, multinational corporations, or any other entity perceived as bad or wrong by these groups or individuals

It remains a fact, however, that gaining unauthorized access is a crime, no matter what the intention is

Module Flow

What Does a Hacker Do?

Phase 1 - Reconnaissance

Reconnaissance refers to the preparatory phase where an attacker seeks to gather information about a target prior to launching an attack

Could be the future point of return, noted for ease of entry for an attack when more about the target is known on a broad scale

Reconnaissance target range may include the target organization's clients, employees, operations, network, and systems

Phase 1 - Reconnaissance

Reconnaissance Types

0

Passive Reconnaissance

- Passive reconnaissance involves acquiring information without directly interacting with the target
- For example, searching public records or news releases

Active Reconnaissance

- Active reconnaissance involves interacting with the target directly by any means
- For example, telephone calls to the help desk or technical department

0

Phase 2 - Scanning

Pre-Attack Phase

Scanning refers to the pre-attack phase when the attacker scans the network for specific information on the basis of information gathered during reconnaissance

Port Scanner

Scanning can include use of dialers, port scanners, network mapping, sweeping, vulnerability scanners, etc.

Extract Information

Attackers extract information such as computer names, IP address, and user accounts to launch attack

Phase 3 - Gaining Access

Gaining access refers to the point where the attacker obtains access to the operating system or applications on the computer or network

The attacker can escalate privileges to obtain complete control of the system. In the process, intermediate systems that are connected to it are also compromised

The attacker can gain access at the operating system level, application level, or network level

Examples include password cracking, buffer overflows, denial of service, session hijacking, etc.

Phase 4 – Maintaining Access

Maintaining access refers to the phase when the attacker tries to retain his or her ownership of the system

Attackers use the compromised system to launch further attacks

Attackers can upload, download, or manipulate data, applications, and configurations on the owned system

Phase 5 - Covering Tracks

Covering tracks refers to the activities carried out by an attacker to hide malicious acts

The attacker's intentions include: Continuing access to the victim's system, remaining unnoticed and uncaught, deleting evidence that might lead to his prosecution

The attacker overwrites the server, system, and application logs to avoid suspicion

Attackers always cover tracks to hide their identity

Module Flow

- There are several ways an attacker can gain access to a system
- The attacker must be able to exploit a weakness or vulnerability in a system

Types of Attacks Operating system attacks Misconfiguration attacks

Shrink wrap code attacks

Types of Attacks on a System

Eavesdropping

Identity Spoofing

Snooping Attacks

Interception

Replay Attacks

Data Modification Attacks

Repudiation Attacks

DoS Attacks

DDoS Attacks

Password Guessing Attacks

Man-in-the-Middle Attacks

Back door Attacks

Spoofing Attacks

Compromised-Key Attacks

Application-Layer Attacks

Attacks on a System

Operating System Attacks

Attackers search for OS
vulnerabilities and exploit
them to gain access to a
network system

Some of the OS vulnerabilities:

- 1. Buffer overflow vulnerabilities
- 2. Bugs in operating system
- 3. Unpatched operating system

Application-Level Attacks

- Software applications come with tons of functionalities and features
 - There is a dearth of time to perform complete testing before releasing products

- Buffer overflow attacks
- Active content
- Cross-site scripting
- Denial of service and SYN attacks
- > SQL injection attacks
- Malicious bots

Phishing

0

- Session hijacking
- Man-in-the-middle attack
- Parameter/Form Tampering
- Directory traversal attacks

0

0

Shrink Wrap Code Attacks

O

- Why reinvent the wheel when you can buy off-the-shelf "libraries" and code?
- When you install an OS/Application, it comes with tons of sample scripts to make the life of an administrator easy
- The problem is "not fine tuning" or customizing these scripts
- This will lead to default code or shrink wrap code attacks

```
Private Function CleanUp Line(ByVal al.ine As String) As String
01.523
           Dim 1QuoteCount As Long
           Dim Leount
                             As Long
01.525
           Dim sChar
01.626
           Dim sPrevChar As String
            " Starts with Rem it is a comment
01.529
           sline = Trim(sline)
          -If Left (sline, 3) = "Pen" Then
ClearSpline = ""
01530
01 532
01 533
              Buit Function
01534
            ' Starts with ' it is a comment
01.536
01.537
          -If Left (sline, 1) = *** Then
ClearUpline = **
01.539
              Heit Function
01541
            ' Contains ' may end in a comment, so test if it is a comment or in the
            Contains body of a string
01542
          -If InStriction, "
01.545
01.545
01.546
              10uoteCount = 0
01.847
              -For locust = 1 To Len(sline)
01.549
                  sChar - Mid(skine, loount, 1)
01.550
                   " If we found " '" then an even maker of " characters in front
01.551
                     mesons it is the start of a comment, and odd number mesons it is
01.552
                    part of a strang
01553
                 "If sChar " " and sPrevChar " " Then
                    If 1QueteCourt Hod 2 = 0 Then
sline = Trim(Left (sline, lcount - 1))
01.554
01.555
                        Rest For
01557
                  -Elself sChar = """ Then
1QuoteCount = 1QuoteCount + 1
01888
01.560
01561
                  s PrevChar = sChar
              Ment Icount
01.562
01.563
01.564
           ClearUpline = sline
```


Misconfiguration Attacks

If a system is misconfigured, such as a change is made in the file permission, it can no longer be considered as secure

The administrators are expected to change the configuration of the devices before they are deployed in the network. Failure to do this allows the default settings to be used to attack the system

In order to optimize the configuration of the machine, remove any redundant services or software

Module Flow

Why Ethical Hacking is Necessary?

Ethical Hacking As hacking involves creative thinking, vulnerability testing and security audits cannot ensure that the network is secure

Defense in Depth Strategy To achieve this, organizations need to implement a "defense in depth" strategy by penetrating into their networks to estimate vulnerabilities and expose them

Counter the Attacks

Ethical hacking is necessary because it allows the countering of attacks from malicious hackers by anticipating methods they can use to break

Defense in Depth

- Defense in depth is a security strategy in which several protection layers are placed throughout an information system
- It helps to prevent direct attacks against an information system and data because a break in one layer only leads the attacker to the next layer

Scope and Limitations of Ethical Hacking

Scope

Ethical hacking is a crucial component of risk assessment, auditing, counterfraud, best practices, and good governance

Scope

It is used to identify risks and highlight the remedial actions, and also reduces information and communications technology (ICT) costs by resolving those vulnerabilities

Limitations

However, unless the businesses first know what it is at that they are looking for and why they are hiring an outside vendor to hack systems in the first place, chances are there would not be much to gain from the experience

Limitations

An ethical hacker thus can only help the organization to better understand their security system, but it is up to the organization to place the right guards on the network

What Do Ethical Hackers Do?

Ethical hackers try to answer the following questions:

What can the intruder see on the target system? (Reconnaissance and Scanning phases) What can an intruder do with that information? (Gaining Access and Maintaining Access phases)

Does anyone at the target notice the intruders' attempts or successes? (Reconnaissance and Covering Tracks phases)

- Ethical hackers are hired by organizations to attack their information systems and networks in order to discover vulnerabilities and verify that security measures are functioning correctly
- Their duties may include testing systems and networks for vulnerabilities and attempting to access sensitive data by breaking security controls

Skills of an Ethical Hacker

Platform Knowledge

Has in-depth knowledge of target platforms, such as Windows, Unix, and Linux Network Knowledge

Has exemplary knowledge of networking and related hardware and software **Computer Expert**

Should be a computer expert adept at technical domains

Security Knowledge

Has knowledge of security areas and related issues Technical knowledge

Has "high technical" knowledge to launch the sophisticated attacks

Module Flow

Vulnerability Research

- The process of discovering vulnerabilities and design flaws that will open an operating system and its applications to attack or misuse
- Vulnerabilities are classified based on severity level (low, medium, or high) and exploit range (local or remote)

An administrator needs vulnerability research: To identify and correct the network vulnerabilities

To gather information about viruses To find weaknesses and alert the network administrator before a network attack

To protect the network from being attacked by intruders To get information that helps to prevent the security problems

To know how to recover from a network attack

Vulnerability Research Websites

http://www.kb.cert.org

http://www.secunia.com

http://nvd.nist.gov

http://www.securiteam.com

Vulnerability Research Websites

CodeRed Center http://www.eccouncil.org

SecurityTracker http://www.securitytracker.com

Symantec http://www.symantec.com

TechNet http://blogs.technet.com

Hackerstorm Vulnerability Database Tool

http://www.hackerstorm.com

HackerWatch http://www.hackerwatch.org

SecurityFocus http://www.securityfocus.com

Security Magazine http://www.securitymagazine.com

Vulnerability Research Websites

SC Magazine

http://www.scmagazine.com

Computerworld

http://www.computerworld.com

Techworld

http://www.techworld.com

HackerJournals

http://www.hackerjournals.com

Help Net Security

http://www.net-security.org/

CNET Blogs

http://news.cnet.com

Security Watch

http://securitywatch.eweek.com

WindowsSecurity Blogs

http://blogs.windowsecurity.com

What is Penetration Testing?

Penetration testing is a method of actively evaluating the security of an information system or network by simulating an attack from a malicious source

Polive Assessme

Security measures are actively analyzed for design weaknesses, technical flaws, and vulnerabilities

Black box testing simulates an attack from someone who is unfamiliar with the system, and white box testing simulates an attacker that has knowledge about the system

The results are delivered comprehensively in a report to executive, management, and technical audiences

Why Penetration Testing?

Identify the threats facing an organization's information assets

Reduce an organization's IT security costs and provide a better return on security investment (ROSI) by identifying and resolving vulnerabilities and weaknesses

Provide an organization with assurance - a thorough and comprehensive assessment of organizational security covering policy, procedure, design, and implementation

Gain and maintain certification to an industry regulation (BS7799, HIPAA etc.)

Adopt best practices by conforming to legal and industry regulations

Focus on high severity vulnerabilities and emphasize application-level security issues to development teams and management

Provide a comprehensive approach of preparation steps that can be taken to prevent upcoming exploitation

Evaluate the efficiency of network security devices such as firewalls, routers, and web servers

Penetration Testing Methodology

Penetration Testing Methodology

Module Summary

- Ethical hacking enables organizations to counter attacks from malicious hackers by anticipating certain attacks by which they can break into the system
- An ethical hacker helps in evaluating the security of a computer system or network by simulating an attack by a malicious user
- Ethical hacking is a crucial component of risk assessment, auditing, counterfraud, best practices, and good governance
- Ethical hackers can help organization to better understand their security systems and identify the risks, highlight the remedial actions, and also reduce ICT costs by resolving those vulnerabilities

Quotes

The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge."

> - Stephen Hawking, Theoretical Physicist and Cosmologist

